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Abstract

Data assimilation into sea ice models designed for climate studies has started about
15 years ago. In most of the studies conducted so far, it is assumed that the improve-
ment brought by the assimilation is straightforward. However, some studies suggest
this might not be true. In order to elucidate this question and to find an appropriate5

way to further assimilate sea ice concentration and velocity observations into a global
sea ice-ocean model, we analyze here results from a number of twin experiments (i.e.
experiments in which the assimilated data are model outputs) carried out with a simpli-
fied model of the Arctic sea ice pack. Our objective is to determine to what degree the
assimilation of ice velocity and/or concentration data improves the global performance10

of the model and, more specifically, reduces the error in the computed ice thickness.
A simple optimal interpolation scheme is used, and outputs from a control run and
from perturbed experiments without and with data assimilation are thoroughly com-
pared. Our results indicate that, under certain conditions depending on the assimila-
tion weights and the type of model error, the assimilation of ice velocity data enhances15

the model performance. The assimilation of ice concentration data can also help in
improving the model behavior, but it has to be handled with care because of the strong
connection between ice concentration and ice thickness.

This study is preliminary study towards real observation data assimilation into
NEMOLIM, a global sea ice-ocean model.20

1 Introduction

In the polar regions, the interactions between atmosphere and ocean are significantly
modified by the presence of sea ice. Because of its high albedo and insulating behav-
ior, sea ice largely affects the surface radiative balance and the oceanic heat budget. In
addition, the melting of weakly saline ice or the brine rejection occurring during ice for-25

mation induces variations in the sea surface salinity that affect the mixed layer dynam-
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ics and the ocean circulation. On the other hand, the ice dynamics plays an important
part in modulating the momentum transfer from the atmosphere to the ocean.

During the past 35 years, the Arctic sea ice concentration and motion have been
widely observed with the aid of passive microwave sensors aboard satellites (e.g.
Bjørgo et al., 1997; Cavalieri et al., 1997; Emery et al., 1997; Parkinson et al., 1999;5

Comiso and Steffen, 2001; Cavalieri et al., 2003). Analysis of these records indicate
that the Arctic sea ice extent has shrunk at an annual mean rate of about 0.30×106 km2

with strong interannual variability since the early 1970s (Cavalieri et al., 2003). Com-
paratively, the Arctic sea ice thickness is much less known.

Our knowledge of sea ice thickness in the Northern Hemisphere comes mainly from10

upward sonar profiling by submarines. Rothrock et al. (1999) compared ice draft data
acquired by the Scientific Ice Expeditions (SCICEX) programme in 1993, 1996 and
1997 with data from six cruises during the period 1958–1976. They found a decrease
in the mean ice draft at the end of the melt season of about 1.3 m (i.e. 40%) in most of
the deep-water areas of the Arctic Ocean. Comparing data from single cruises in 199615

and 1976 from Fram Strait to the North Pole, Wadhams and Davis (2000) reported
a strikingly similar reduction in ice draft. In contrast, ice draft data collected during
six submarine cruises from Alaska to the North Pole in 1991–1997 exhibit almost no
change (Winsor, 2001). From nine cruises from 1976 through 1994 on the Alaska-
to-North Pole section, Tucker et al. (2001) found an abrupt thinning between the mid-20

1980s and early 1990s. No similar trend was however observed near the North Pole.
Recently, a detailed analysis of submarine and modeled ice thicknesses (Holloway and
Sou, 2002) has demonstrated that ice motion and high interannual variability make
inference of trends from sonar transect data ambiguous. Thus, the available sonar data
are insufficient to resolve the variability of the Arctic ice thickness. New techniques to25

measure the sea ice thickness from space are now being developed (e.g. Laxon et al.,
2003; Yu and Lindsay, 2003; Kwok et al., 2004). Nevertheless, an accurate knowledge
of past ice thickness variations remains necessary in order to assess human-induced
climate changes in the Arctic.
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A number of regional or global ice-ocean general circulation models driven by atmo-
spheric reanalysis data fields have been used to document the variability of the Arctic
sea ice over the last few decades (e.g., Maslowski et al., 2000; Holloway and Sou,
2002; Fichefet et al., 2003; Köberle and Gerdes, 2003; Rothrock and Zhang, 2005;
Timmermann et al., 2005). These models provide very useful information regarding5

the large-scale behavior of the ice pack at the decadal time scale. However, their
ability to simulate the shorter-term variability as well as summer features of the ice
cover remains rather limited. Consequently, hindcast simulations of Arctic sea ice of-
ten deviate from reality. One way of estimating this might be to assimilate the available
ice concentration and/or velocity observations into the models. Assimilating data into10

numerical models has proven very useful in the atmospheric and oceanic modeling
communities for many years (e.g. Ghil and Malanotte-Rizzoli, 1991). It is however a
less common practice in large-scale sea ice modeling.

Thomas and Rothrock (1989, 1993) have applied Kalman smoothing to passive mi-
crowave ice concentration data. They utilized a simple sea ice model, driven by ve-15

locities optimally interpolated from buoy motions, to form independent model-derived
concentration estimates that were optimally blended with the concentration data. They
then analyzed seven years of first-year and multiyear ice concentration data for the Arc-
tic Ocean, which they divided into seven regions. Later, Thomas et al. (1996) extended
this work to the calculation of ice thickness. They used observed ice motions, winds20

and ice concentrations plus a thermodynamic sea ice model to produce spatially and
temporally varying ice thickness distribution in the Arctic. By comparing their results
with submarine ice thickness data, they found that, for the whole Arctic Ocean, their
estimates agree with the observational data but show less spatial and temporal vari-
ability. More recently, Lisaeter et al. (2003) demonstrated the assimilation of passive25

microwave ice concentration data into a comprehensive ice-ocean general circulation
model of the Arctic Ocean using an ensemble Kalman filter. They concluded that the
assimilation of ice concentration data is a viable way of controlling the simulated ice
cover, but does not allow to correct the generally underestimated model ice thickness.
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The study of Meier et al. (2000) was the first attempt to assimilate observed ice
motion data into a large-scale model of the Arctic sea ice cover in order to maxi-
mize the model accuracy. These authors employed an optimal interpolation scheme
to assimilate ice velocity data derived from passive microwave imagery. They found
that the assimilation substantially reduces the error standard deviation and improves5

the correlation of the simulated motions relative to buoy observations. Nevertheless,
they noticed that the assimilation induces unrealistic changes in ice thickness near
the Greenland coast and the Canadian Archipelago as well as in the outflow of ice
mass through Fram Strait. In other studies, Meier and Maslanik (2001a,b) demon-
strated the utility of a data assimilation approach for improving the model estimation of10

buoy trajectories and for investigating synoptic events in the Arctic sea ice drift. Later,
Arbetter et al. (2002) combined satellite-derived and modeled ice velocities in a large-
scale Arctic sea ice model to simulate the anomalous summer ice retreats observed in
1990 and 1998. For both years, the computed ice extent appears in better agreement
with observational estimates when ice velocity data are assimilated, but excessive ice15

melt occurs in the central pack. Meier and Maslanik (2003) further investigated the
effects of local conditions (namely, the proximity to the coast, the ice thickness and the
wind forcing) on Arctic remotely sensed, modeled and assimilated ice velocities. They
showed that the optimal interpolation assimilation technique improves the quality of
the ice motion throughout most ranges of wind speed and ice thickness both in coastal20

and non-coastal regions. Their results also suggest that the use of assimilation weights
optimized for representative environmental conditions would further reduce errors and
yield greater benefits from assimilation. In parallel, Zhang et al. (2003) conducted a
hindcast simulation of the Arctic sea ice variations over the period 1992–1997 with a
regional ice-ocean general circulation model in which buoy and passive microwave ice25

motion data were assimilated by means of an optimal interpolation scheme. Assim-
ilation was found to significantly improve the modeled ice motion, with substantially
reduced stoppage, which in turn leads to strengthened ice outflow at Fram Strait, en-
hanced ice deformation and ice drafts that are slightly closer to those derived from
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submarine measurements. Lindsay et al. (2003) extended this work for a 10-month pe-
riod in 1997 and 1998. Comparisons of ice velocity Radarsat Geophysical Processor
System (RGPS) measurements to the modeled velocities showed excellent agreement
from the model-with-data-assimilation run but poorer agreement for the model-only run.
However, the deformation from the data assimilation run was in modest agreement with5

observations, suggesting that some model aspects need improvement.
Very recently, Lindsay and Zhang (2006) extended the work of Zhang et al. (2003)

by incorporating in their model of the Arctic ice-ocean system a nudging scheme with a
non-linear weighting function to assimilate passive microwave ice concentration data.
They observed that the assimilation of ice concentration alone increases the ice draft10

bias, especially in the marginal seas, but improves the correlation with ice draft mea-
surements made by upward looking sonars on submarines and moorings. When both
ice concentration and velocity data are assimilated, an improvement in the ice draft
comparison is obtained, but a significant bias still exists in the large-scale ice thick-
ness pattern. It should be noted that Lindsay and Zhang (2005) used this experimental15

set-up to investigate the causes of the recent changes of the Arctic ice pack.
The abovementioned studies indicate that data assimilation generally improves the

model estimate of the assimilated variable(s) but can deteriorate the simulation of other
variables. So far, no detailed assessment of the impact of data assimilation on the
global performance of a large-scale sea ice model has been performed. This is mainly20

due to our very limited knowledge of both modeling and observational errors (Weaver
et al., 2000). In order to circumvent this difficulty, we analyze here results from a
number of twin experiments (i.e. experiments in which the assimilated data are model
outputs) carried out with a simplified model of the Arctic sea ice pack. This method
to approach data assimilation into sea ice model is an interesting first step towards25

real data assimilation schemes into NEMOLIM (Timmermann et al., 2005), a global
sea ice-ocean model. Our aim is to determine to what degree the assimilation of ice
velocity and/or concentration data improves the overall performance of the model and,
more specifically, reduces the error in the computed ice thickness.
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The rest of the paper is organized as follows. Section 2 provides a brief description
of the model and forcing. The assimilation scheme and experimental design are pre-
sented in Sect. 2. Section 4 is devoted to the discussion of the results. A summary and
some concluding remarks are finally given in Sect. 5.

2 Model formulation and forcing5

The model used in this work is a simplified two-level, thermodynamic-dynamic sea ice
model. This model takes into account the most relevant sea ice processes while being
inexpensive in CPU time. As mentioned above, this model is used to have a first-guess
estimate on data assimilation into sea ice model. Therefore, this model is not meant to
reproduce exactly the sea ice features and should be taken as a “toy-model”.10

The main model variables are the ice thickness, hi , the ice concentration, Ai , and
the ice velocity, ui . The presence of snow on top of sea ice is neglected. However,
a prescribed, monthly varying surface albedo that takes into account the presence of
snow is used (Semtner, 1976). Local changes in ice thickness and concentration are
calculated from the following conservation laws:15

∂Aihi

∂t
= −∇ · (uiAihi ) + Sh (1)

∂Ai

∂t
= −∇ · (uiAi ) + SA (2)

where t is the time and Sh, and SA, are thermodynamic sink or source terms com-
puted as in Hibler (1979). The vertical growth/decay rate of the ice is determined
by the zero-layer model proposed by Semtner (1976). When ice is present in a grid20

cell and the heat budget of the open-water area becomes negative, ice of thickness
ho=0.5 m (Hibler, 1979) is accumulated onto the side of the existing ice. The thickness
of the newly formed ice is then averaged with that of the older ice to obtain a single
value. Furthermore, a minimum open-water fraction of 0.5% is prescribed to simulate
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the fact that cracks or leads are always present inside the pack owing to unresolved
dynamical effects. Ice dynamics is computed by assuming that sea ice behaves as
a two-dimensional continuum in dynamical interaction with atmosphere and ocean. A
first estimate of the sea ice velocity is obtained from the so-called free-drift equation:

−mfk × ui + τa + τw = 0 (3)5

where m is the ice mass per unit area, f is the Coriolis parameter, k is a vertical
unit vector and τa and τw are the forces (per unit area) due to air and water drags,
respectively. Note that the force (per unit area) associated with the tilt of the sea surface
is neglected. The computed velocity is then corrected to avoid excessive ice build-up
in regions of convergent ice motion due to the neglect of internal ice forces. Following10

Kreyscher et al. (2000), the ice velocity is set equal to zero where (1) the ice thickness
exceeds 3 m and (2) the ice would be transported into an area with thicker ice. Applied
as it is, this correction is too steep and causes problems when assimilating data into the
model. To prevent those troubles, it is necessary to smooth the transition by applying
a hyperbolic tangent reduction factor to the ice velocity.15

Un upstream scheme with anti-diffusion is used for advection (Smolarkiewicz, 1983).
First the thermodynamical equations, then the dynamical ones are solved on a Carte-
sian grid covering the Arctic Ocean and adjacent seas, with a spatial resolution of about
100 km (Fig. 1). A time step of one day is employed.

Daily 2 m air temperatures and 10 m winds from the National Centers for Environ-20

mental Prediction/National Center for Atmospheric Research (NCEP/NCAR) (Kalnay
et al., 1996) are utilized to drive the model. The other atmospheric input fields consist
of climatological monthly surface relative humidities (Trenberth et al., 1989) and cloud
fractions (Parkinson and Washington, 1979). The surface fluxes of heat are determined
from these data using empirical parameterizations described by Goosse (1997). The25

oceanic heat flux at the base of the ice layer, Fb, is given by:

Fb = ρwcpwhmlγt(Tobs − Tml ) (4)
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where ρw is the density of seawater, cpw is the specific heat of seawater, hml is the

mixed-layer depth (30 m), γt is a time constant (6×10−8 s−1), Tml is the model mixed-
layer temperature and Tobs is the monthly mean observed mixed-layer temperature
given by the Polar Science Center Hydrographic Climatology (PHC, Steele et al., 2001).
When sea ice is present in a grid cell, Tml is set equal to the freezing point of seawater5

(271.2 K according to Semtner, 1976). Ice is not allowed is grid cells where Tml is
greater than the freezing point of sea water. In ice-free grid cells, Tml is determined
from the heat budget of the mixed layer. It is worth mentioning that Fb is included in
this heat budget to implicitly account for the advection of heat by oceanic currents. If
Tml reaches the freezing point, then a new ice layer of thickness ho forms at the ocean10

surface. The momentum fluxes at the various interfaces are obtained from standard
bulk formulas described by Goosse (1997). For the quadratic drag coefficients between
air and ice and between ice and water, we use constant values of 1.2×10−3 (McPhee,
1980) and 5×10−3 (Timmermann et al., 2005), respectively. The ocean is assumed to
be motionless.15

3 Experimental design and assimilation scheme

3.1 Experimental design

As mentioned in Sect. 1, the major problem when assimilating data into large-scale
sea ice models comes from our rather poor knowledge of both model and observation
errors. To overcome this problem, we build an idealized “observational” dataset with20

the model and perform so-called twin experiments (Fig. 2).
A control run from 1977 to 2000 is first conducted. The model is initialized with a

3 m-thick and 99.5%-compact ice cover over the entire domain. Outputs for years 1995
and 1996 are regarded as the “reality” or “true state” (hereafter referred to as TS) for
those years (i.e. as observations without any error). Then, to account for model errors25

in estimating the TS, the model is perturbed and new experiments are carried out over
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the years 1995 and 1996. These two years are selected because they illustrate most
of the encountered problems. In order to introduce errors that remain consistent with
the model physics, perturbations are applied to the model forcing. The chosen pertur-
bations are fairly strong. This is however a good way to highlight difficulties brought
with data assimilation. Tests with smaller perturbations led to the same type of results.5

Two types of disturbance are considered. First, we use the surface air temperatures
of years 1992 and 1993 instead of those of years 1995 and 1996. In this case, the
dynamic component of the model is regarded as perfect and the thermodynamic com-
ponent as a source of errors. Second, the surface winds employed to compute the
air-ice stress are replaced by those of years 1992 and 1993. This time, it is the ther-10

modynamic component of the model which is considered as perfect and the dynamic
component as a source of errors. For both cases, we assess how the assimilation of
ice velocities and/or concentrations from the TS improves the model behavior. Table 1
summarizes the various types of experiment made with the model.

The observation data sets are compiled from control experiment outputs. No noise15

is added. The impact of the data set quality on the assimilated results is not studied
here, although it would be an interesting work to carry out.

Twin experiments are common practice in atmospheric and oceanic modeling (e.g.
Lin et al., 2001; Fox et al., 2000). However, to our knowledge, it is the first time that
simulations of this kind are performed with a sea ice model. Usually, twin experiments20

are carried out in a forecasting perspective, and thus the model is perturbed by chang-
ing initial conditions. Here, as the purpose is rather oriented toward reanalysis, we find
more appropriate to alter the thermal and dynamical forcings.

3.2 Assimilation scheme

At each time step, an optimal interpolation scheme is used to assimilate ice concentra-25

tion and ice velocity data into the model according to:

Aass = A + kA(Aobs − A) (5)

274

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/4/265/2007/osd-4-265-2007-print.pdf
http://www.ocean-sci-discuss.net/4/265/2007/osd-4-265-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


OSD
4, 265–301, 2007

Data assimilation into
sea ice modeling

V. Dulière and T. Fichefet

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

uass = u + ku(uobs − u) (6)

where the subscripts “ass” and “obs” stand for assimilated and observed data. kA
and ku are the weights for ice concentration and ice velocity data assimilation and are
usually determined through a least squares minimization of the error variance of the
assimilated value compared to a statistical true value (Meier et al., 2000; Lindsay and5

Zhang, 2006). However, the present experimental design provides one observation per
model grid cell with zero error. The weight should then be set to one, and observed
data would directly be inserted into the model. Nevertheless, as shown in Sect. 4, a
weight equal to 1 does not systematically give the best results.

The assimilation technique used in this paper is simple but accurate enough for the10

purpose of our study. In particular, as shown in Sect. 4, it allows to underline a number
of problems posed by the assimilation of ice concentration and/or velocity data into
large-scale sea ice models.

4 Results

4.1 Control run15

The model ice circulation averaged over 1979–1999 (Fig. 3a) exhibits many of the
recurrent or permanent features of the observed ice motion (e.g. Emery et al., 1997).
In particular, the clockwise Beaufort Gyre, the Transpolar Drift Stream and the East
Greenland Drift Stream are all reproduced. Note that the model has no river runoff and
motionless ocean. The magnitude of the ice velocity appears globally underestimated.20

On average, the simulated ice drift tends to thin the ice off the Alaskan and Siberian
coasts while increasing the ice thickness by convergence and concomitant ridging off
the Canadian Archipelago and the north coast of Greenland (Fig. 3b). The shape
and magnitude of the simulated ice thickness contours are in general agreement with
those derived from submarine sonar measurements (e.g. Bourke and Garrett, 1987).25

The most flagrant departure from current estimates is observed along the Canadian
275

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/4/265/2007/osd-4-265-2007-print.pdf
http://www.ocean-sci-discuss.net/4/265/2007/osd-4-265-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


OSD
4, 265–301, 2007

Data assimilation into
sea ice modeling

V. Dulière and T. Fichefet

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Archipelago and the north coast of Greenland, where the model generates too thin an
ice cover. This feature together with the generally too weak ice velocities mainly result
from the simplistic treatment of the effect of internal ice forces in the model.

Figure 4 compares the March and September mean ice concentrations computed by
the model to the corresponding observations of Comiso (1999). In March, the modeled5

location of the ice edge agrees relatively well with the observed one. One notes, how-
ever, that the ice cover protrudes slightly too far southward in the Barents, Greenland
and Labrador Seas. In September, the simulated ice edge is somewhat south of the
observed one in the Barents and Kara Seas, and ice persists in Baffin Bay, whereas
observations show that this area is totally free of ice during that month. A detailed10

inspection of Fig. 4 also reveals that the percentage of open water within the summer
pack is somewhat overestimated.

Although we have identified a certain number of shortcomings in the results of the
control run conducted with the model, the discussion above demonstrates that the
model shows acceptably good agreement with enough aspects of the seasonal behav-15

ior of the Arctic sea ice cover to permit a reliable study of the effect of the assimilation
of ice velocity and/or concentration data through twin experiments.

4.2 Thermodynamic perturbation

4.2.1 Assimilation of ice velocity data

In this section, we examine the impact of assimilating ice velocities from the TS on the20

model behavior when the model is thermodynamically perturbed (see Sect. 3.1).
Tables 2 and 3 compare the annual mean results obtained without and with assim-

ilation for year 1995 to the TS for different values of the weight ku (0.3, 0.5 and 0.9).
Clearly, the assimilation of ice velocity data is a good way to improve the simulation of
the ice motion. The higher ku, the better the assimilated ice velocities. The correla-25

tions between the computed ice concentrations and thicknesses and the TS ones are
also enhanced when assimilation is performed and when ku increases. Taken together,
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the error in ice thickness averaged over the entire area occupied by the pack and the
standard deviation of this error are minimum for ku=0.5. As can be seen from Fig. 5,
the standard deviation of the ice thickness error is slightly weaker for ku=0.9 than for
ku=0.5 during the first five months of 1995 and becomes significantly larger afterwards.
Actually, the thermodynamic perturbation applied to the model significantly affects the5

ice thickness distribution. The TS ice velocities may therefore be quite different from
the model ones. So, a strong relaxation toward those velocities may cause an amplifi-
cation of the ice thickness error. For instance, if the ice is too thick in a region because
of too low an air temperature, convergence will weaken in this area via Kreyscher’s
correction. When higher ice velocities are assimilated, convergence becomes stronger10

and ice thickens, thus amplifying the ice thickness error. This is especially true during
summer melt and autumn freeze up.

Figure 5 suggests to take ku equal to 0.5 in experiments longer than five months.
However, such a choice leads to another problem. Table 3 indicates that the area-
averaged, annual mean ice concentration bias is enhanced compared to the no-15

assimilation case with ku=0.5. By contrast, the error in ice thickness is reduced, but not
for the good reason. When velocity data are assimilated with ku=0.5, the velocity field
after assimilation is the arithmetic average of the model and TS velocity fields. This
average globally smoothes the ice advection. Therefore, the ice cover experiences
less divergence, which yields an enhanced ice compactness, and less convergence,20

resulting in less ice build-up. This problem fades away as ku increases.
As “perfect” data are assimilated into our model, one was expecting to obtain the

best results with the highest weight. Our results show that this is not necessarily the
case. On time scales less than five months, it seems preferable to use a large ku, while
over longer time scales, a smaller ku must be used, which generates too smooth an25

ice transport.
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4.2.2 Assimilation of ice concentration data

Here, we evaluate the effects of the assimilation of ice concentrations from the TS when
a thermodynamic perturbation is applied to the model. In each grid cell, the sea ice
volume, Vi , can be diagnosed from:

Vi = AihiS (7)5

where S is the grid cell area (constant). When the ice concentration varies owing to
assimilation, one may either conserve ice volume or ice thickness. The first solution
appears more appropriate given the huge effort put in recent years into developing
energy-conserving sea ice models. Nonetheless, it can create serious problems. In-
deed, if the ice concentration in a grid cell is too large (small) due to the use of an10

erroneously low (high) surface air temperature, there is every chance that the ice thick-
ness is also overestimated (underestimated). This is at least true during the winter and
during summer melt. The autumn freeze-up case would probably be different. The as-
similation will then tend to reduce (increase) the ice concentration. If the conservation
of ice volume is imposed, this will lead to an increase (decrease) in ice thickness, thus15

enhancing the initial thickness bias. Figures 6a and b display the changes (in absolute
value) in annual mean ice thickness between the experiments without and with assimi-
lation of ice concentration data and the TS for year 1996. In the case with assimilation,
ice volume conservation is imposed and kA=0.15. It can be seen from these figures
that the assimilation deteriorates in many places the simulation of the sea ice thick-20

ness, especially near the ice edge where the thermodynamic error can be quite large
due to the high interannual variability of the air temperature.

The second solution is to conserve ice thickness. Overall, this solution improves the
ice thickness estimate compared to the no-assimilation case (Fig. 6c). However, the
thickness bias is observed to increase along the north coast of Alaska. In several grid25

cells there, the applied thermodynamic perturbation produces so large ice accumula-
tions that there is no longer ice convergence (because of Kreyscher’s correction) into
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the grid cells. Only ice divergence is allowed, which tends to decrease the ice com-
pactness. At this stage, the dynamic error has become larger than the thermodynamic
one. The assimilation of ice concentration data corrects the too low concentration by
adding an ice block of thickness equal to that of the pre-existing ice, which has no effect
on the ice thickness. Furthermore, as ice volume is not conserved in the assimilation5

process, during ice divergence episodes, the grid cells affected by this problem act as
a source of ice volume for the neighboring ones. Clearly, in those specific cases, it
would be better to impose ice volume conservation.

Given these results, we propose to combine the two solutions. Basically, the ther-
modynamic perturbation introduces direct thermodynamic errors into the model as well10

as indirect dynamic and thermodynamic ones, due to ice thickness and concentration
biases. Near the ice edge and in areas where thermodynamic errors are greater than
dynamic ones, ice thickness conservation is imperative. Elsewhere, it seems more ap-
propriate to conserve ice volume. The problem now is to draw a distinction between
thermodynamic and dynamic errors. We observed that, when ice concentration in a15

grid cell is corrected through data assimilation, if the error is of thermodynamic (dy-
namic) nature, the model concentration remains close to (strongly deviates from) the
TS one during the next time step. Therefore, we assume that the magnitude of the
ice concentration error is an indicator of the model error type. When the difference
between modeled and TS concentrations is smaller (greater) than a certain threshold,20

the error is supposed to be thermodynamic (dynamic). Figure 6d reveals that this tech-
nique further improves the simulation of the annual mean ice thickness distribution for
year 1996 compared to the case where ice thickness conservation is applied every-
where. On the other hand, Fig. 7 shows that the monthly values of the area-averaged
ice thickness bias and thickness error standard deviation are significantly reduced in25

comparison with the no-assimilation case and that the correlation between the modeled
and TS ice thicknesses is slightly enhanced.

Figure 6d indicates that, in some places, the assimilation deteriorates a bit the ice
thickness estimate. This feature is mostly due to the use of thresholds in the model,
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such as the thickness of newly formed ice in leads, the maximum allowable ice con-
centration or Kreyscher’s correction threshold. Owing to those thresholds, small differ-
ences in the sea ice state can have noticeable effects. These effects are particularly
visible during the first couple of years of simulation. Afterwards, when the ice thickness
error caused by the perturbed forcing grows, they become negligible and the improve-5

ment brought by data assimilation to the model becomes clearer.
All the experiments that we conducted with the model point to the fact that choosing

kA equal to 0.15 gives the best model improvement while preventing the appearance
of model instabilities. They also suggest that, because of the strong connection be-
tween ice concentration and ice thickness, assimilation of concentration data has to10

be handled with care. The best solution we found is to conserve ice thickness after
assimilation near the ice margin and where the thermodynamic error is larger than the
indirect dynamic one, and to conserve ice volume everywhere else. To be total, the ice
thickness correction should depend on the physical mechanisms involved. However,
ice thickness errors are seldom fully corrected and they influence the next physical15

mechanism errors. According to this feedback, the correction suggested in this pa-
per is one possible correction to be applied. This solution is therefore retained in the
experiments discussed in the following section.

4.2.3 Assimilation of ice velocity and concentration data

The model performance can be further enhanced by assimilating simultaneously ice20

velocities and concentrations from the TS. But, here again, the choice of the weights
appears crucial.

In Table 3, we compare the annual mean results obtained without and with assimila-
tion for year 1995 to the TS for two sets of weights: ku=0.5 and kA=0.15; ku=0.9 and
kA=0.15. For ku=0.5 and kA=0.15, the correlations between the estimated ice concen-25

trations and thicknesses and the TS ones are significantly increased, and the standard
deviations of the errors in ice concentration and thickness are markedly reduced. Nev-
ertheless, as a result of the assimilation-induced smoothing of the ice velocity field
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discussed in Sect. 4.2.1, the simulated ice pack is slightly too thin and too compact.
When ku=0.9 and kA=0.15, the model results seem further improved. However, for
the same reason as the one given in Sect. 4.2.1, when time times goes by, the simu-
lation of ice thickness progressively deteriorates. In summary, the assimilation of ice
velocity and/or concentration data is able to weaken the effect of the thermodynamic5

perturbation applied to the model. Nonetheless, given the sensitivity of the improve-
ment brought by assimilation to the weights, their value must be selected carefully in
function of the characteristic time scale of the assimilated variable, the type of model
error and the model integration length.

4.3 Dynamic perturbation10

4.3.1 Assimilation of ice velocity data

Here, we assess the impact of the assimilation of ice velocities from the TS on the
model performance when the model is dynamically perturbed (see Sect. 3.1). Several
values of kv have been tested. Table 4 shows that, for ku=0.5, the correlations between
the simulated ice concentrations and thicknesses and the TS ones increase notably15

in 1995 compared to the no-assimilation case, and that the standard deviations of
the errors in ice concentration and thickness decrease significantly. However, once
again, because of the ice velocity smoothing caused by assimilation, the model ice
field becomes somewhat too thin and too compact. The situation is much improved
when ku=0.9. Actually, the best way to get rid of this problem would be to use a weight20

equal to 1.

4.3.2 Assimilation of ice concentration data

In this section, we try to find the best way to assimilate ice concentrations from the
TS into the model in order to improve the ice thickness estimate when a dynamic
perturbation is applied to the model.25
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As already mentioned, the ice concentration is tightly linked to the ice thickness and
volume. To avoid error feedbacks, we analyze ice concentration and thickness errors
just after the first time step of the experiment without assimilation. We define the mean
ice thickness in a given grid cell as him=Aihi . Figure 8 reveals that, for most grid cells,
the error in him is quasi-equal to the product of hi and the error in Ai . As Vi=himS,5

this suggests that the ice volume should be corrected by adding or removing an ice
block of thickness hi and of concentration equal to the error in Ai . In other words, the
in-situ ice thickness should be conserved after assimilation of ice concentration data.
This also suggests that kA should be taken equal to 1. If this technique is used, the
error in him is reduced to almost zero in the majority of grid cells (crosses in Fig. 9a).10

Nonetheless, in grid cells where either the modeled or TS concentration is equal to the
maximum allowable value Amax (diamonds in Fig. 9a), the bias remains large. During
the second time step, the assimilation of ice concentration data lowers the error in him
in most grid cells (crosses in Fig. 9b). By contrast, the mean ice thickness worsens in
grid cells where a significant bias was observed during the first time step (triangles in15

Fig. 9b). This behavior is mainly due to ice piling. The model piles the ice to prevent
Ai>Amax. If ice piling occurs in the perturbed experiment but not in the TS, assimilation
of ice concentration data is only able to partly correct the simulated ice concentration.
On the other hand, as we suppose that hi is conserved after assimilation, the error in
hi remains, as well as part of the error in him. Later, this error weakly perturbs the20

thermodynamic component of the model and strongly affects the dynamic one, which
leads to error amplification. Note that this is also true for grid cells where Ai<Amax
while TS shows Ai=Amax. The proposed solution therefore seems to work on short time
scales, with initial conditions very close to reality. However, on longer time scales, it is
inappropriate because, in problematic grid cells, it leaves errors which grow afterwards.25

It is worth noting that a smaller kA lowers the error amplification process without erasing
it.

Another possible solution might be to impose, after assimilation, ice volume con-
servation within the ice pack and ice thickness conservation close to the ice edge,
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where the mean ice thickness is less than say 0.5 m. This solution would be consistent
with the best solution found for the thermodynamically perturbed model. However, as
shown in Table 4 for kA=0.30, it deteriorates the ice thickness simulation compared to
the no-assimilation case. This is caused by the fact that, during a particular time step,
the perturbed wind forcing greatly modifies the ice circulation and the geographical dis-5

tribution of ice thickness. Consequently, the next time step, the ice melt/growth rate
and transport can be very different from the TS.

In conclusion, when the model is dynamically perturbed, assimilation of ice concen-
trations from the TS is one way to improve the estimated ice concentrations but not
always the estimate of ice thickness. As a matter of fact, for short-term studies (a10

few days), the best model improvement is observed when in-situ ice thickness is con-
served. For longer-term studies, one should rather conserve the ice volume than the
in-situ ice thickness, unless the mean ice thickness is lower than 0.5 m.

4.3.3 Assimilation of ice velocity and concentration data

When both ice velocities and concentrations from the TS are assimilated into the15

model, the abovementioned problems remain and the model improvement is not al-
ways straightforward. The best results are obtained with ku=0.9 and kA=0.3 (a ku
equal to 1 would correct most of the errors without giving the chance to the concen-
tration assimilation to operate) and when the ice volume is forced to be conserved
everywhere except near the ice margin. Results for year 1995 of this experiment are20

summarized in Table 4. The model performance is overall enhanced compared to the
velocity-only assimilation case. Even if the average correlation between the computed
ice thicknesses and the TS ones is slightly reduced, the average ice thickness bias and
the standard deviation of this error are drastically diminished.
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5 Conclusions

Twin experiments have been conducted with a simplified model of the Arctic sea ice
cover in order to determine to what extent the assimilation of ice velocity and/or con-
centration data improves the model behavior and, in particular, the simulation of ice
thickness. Such experiments are idealized and do not allow tackling all the problems5

encountered when assimilating real observations into more complex models. How-
ever, this study is a first step towards real data assimilation into more complex sea
ice-ocean model and permits a pretty good analysis of the way the model reacts to the
data assimilation scheme.

Our results show that the assimilation of ice concentration data could easily lead to10

a deterioration of the model performance if it is not handled with care. This is mostly
due to the strong connection between ice concentration and ice thickness. The best
way to estimate the sea ice state through concentration assimilation in the sea ice
model is to make the distinction between model thermodynamic and dynamic errors.
When the model error in a grid cell is mainly thermodynamic or near the ice edge,15

the assimilation must add or remove an ice block of thickness equal to that of the pre-
existing ice to better fit the observed ice concentration, which means that ice volume
must not be conserved in the process. On the contrary, when the model error is mainly
dynamic, the assimilation must preserve the ice volume. For our experimental design,
the most appropriate value for the weight, kA, is 0.15–0.3.20

Assimilation of ice velocity data is found to significantly improve the overall ice model
estimation if the model dynamics is wrong, especially when a high weight is utilized.
When the model error is thermodynamic, the improvement brought by assimilation is
not as clear. The results obtained in the present study also reveal that the assimilation
of ice velocity data and the assimilation of ice concentration data are very complemen-25

tary, so that assimilating simultaneously ice velocity and concentration data into the
model seems to be the best means to enhance the ability of the model to reproduce
the observed features of the sea ice field.
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Data assimilation is surely a suitable method for improving simulations of the sea ice
pack made by large-scale sea ice models. Nevertheless, it is worth stressing that a bet-
ter estimate of one model variable does not automatically yield better estimates of the
other model variables. In addition, thresholds in the sea ice model can increase errors
when data are assimilated. Finally, a good knowledge of both model and observation5

errors is also essential to apply consistent corrections.
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Table 1. Acronyms of the twin experiments performed with the model. XX and YY represent
the values of the weights for ice velocity and concentration assimilation, respectively.

Thermodynamical Dynamical model
model perturbation perturbation

Without data assimilation WA T WA D
Concentration data assimilation CA T XX CA D XX
Velocity data assimilation VA T YY VA D YY
Velocity and concentration data assimilation VCA T YY XX VCA D YY XX
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Table 2. Area-averaged, annual mean correlations between the ice velocity components from
experiments WA T, VA T 0.3, VA T 0.5 and VA T 0.9 and the TS ones, and area-averaged,
annual mean errors in the ice velocity components and standard deviations of these errors for
experiments WA T, VA T 0.3, VA T 0.5 and VA T 0.9.

Correlation Bias (10−4m/s) Error std (m/s)

U V U V U V

WA T 0.38 0.36 2.48 -2.15 0.028 0.023
VA T 0.3 0.69 0.68 1.12 -1.09 0.018 0.015
VA T 0.5 0.84 0.83 1.25 -0.91 0.012 0.010
VA T 0.9 0.98 0.98 0.39 -0.22 0.002 0.002
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Table 3. Area-averaged, annual mean correlations between the ice thickness and con-
centration from experiments WA T, VA T 0.3, VA T 0.5, VA T 0.9, VCA T 0.5 0.15 and
VCA T 0.9 0.15 and the TS ones, and area-averaged, annual mean errors in the ice thickness
and concentration and standard deviations of these errors for experiments WA T, VA T 0.3,
VA T 0.5, VA T 0.9, VCA T 0.5 0.15 and VCA T 0.9 0.15. In experiments VCA T 0.5 0.15
and VCA T 0.9 0.15, ice thickness conservation is imposed near the ice margin and where the
thermodynamic error is larger than the indirect dynamic one, and ice volume conservation is
imposed everywhere else.

Correlation Bias Error std

hi Ai hi (10−2m) Ai (10−2) hi (m) Ai

WA T 0.75 0.32 8.77 1.81 0.142 0.078
VA T 0.3 0.79 0.56 6.23 2.27 0.125 0.072
VA T 0.5 0.82 0.73 6.48 2.22 0.121 0.067
VA T 0.9 0.87 0.93 8.82 1.82 0.132 0.062
VCA T 0.5 0.15 0.85 0.87 -2.94 0.41 0.114 0.029
VCA T 0.9 0.15 0.90 0.97 2.82 0.38 0.100 0.023
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Table 4. Same as Table 3, but for experiments WA D, VA D 0.5, VA D 0.9, CA D 0.3 and
VCA D 0.9 0.3. In experiments CA D 0.3 and VCA D 0.9 0.3, we impose ice volume conser-
vation within the ice pack and ice thickness conservation close to the ice edge.

Correlation Bias Error std

hi Ai hi (10−2m) Ai (10−2) hi (m) Ai

WA D 0.78 0.29 0.21 0.05 0.106 0.066
VA D 0.5 0.90 0.72 -3.18 0.63 0.079 0.043
VA D 0.9 0.98 0.98 -0.80 0.14 0.027 0.014
CA D 0.3 0.55 0.68 1.17 0.05 0.119 0.029
VCA D 0.9 0.3 0.92 1.00 -0.01 0.02 0.055 0.006
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Fig. 1. Model domain and grid.
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Fig. 2. Schematic representation of the experimental design.
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Fig. 3. Annual mean ice velocities (a) and March ice thicknesses (b) from the control run av-
eraged over the period 1979–1999. Scale vector for ice velocity is 3 cm s−1. Selected contours
for ice thickness are 0.5, 1, 1.5, 2, 2.5 and 3 m.
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Fig. 4. March (left) and September (right) ice concentrations averaged over the period 1979–
1999 from the control run (top) and as observed (Comiso, 1999; bottom). Contour interval is
0.10.
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Fig. 5. Temporal evolutions over year 1995 of the standard deviations of the ice thickness error
for experiments WA T (solid line), VA T 0.9 (dashed line) and VA T 0.5 (dashed-dotted line).
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Fig. 6. Differences (in absolute value) in annual mean ice thickness for year 1996 between
experiment WA T and the TS (a), and between experiment CA T 0.15 and the TS when we
impose ice volume conservation everywhere (b), ice thickness conservation everywhere (c)
and ice thickness conservation near the ice margin and where the thermodynamic error is
larger than the indirect dynamic one, and ice volume conservation everywhere else (d).
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Fig. 7. Temporal evolutions over year 1996 of the area-averaged correlations between ice
thicknesses from experiments WA T and CA T 0.15 and the TS ones (a), the area-averaged
ice thickness errors for experiments WA T and CA T 0.15 (b), and the standard deviations
of the ice thickness errors for experiments WA T and CA T 0.15 (c). In the experiment with
assimilation, ice thickness conservation is imposed near the ice margin and where the thermo-
dynamic error is larger than the indirect dynamic one, and ice volume conservation is imposed
everywhere else.
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Fig. 8. Error in him versus error in Ai times hi at the end of the first time step of experiment
WA D. The diamonds correspond to the grid cells where either the modeled or TS ice concen-
tration is equal to Amax and the crosses correspond to the other grid cells. The 1:1 line is also
plotted.
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Fig. 9. (a) Error in him before assimilation versus error in him after assimilation for the first
time step of experiment CA D 0.3. The ice thickness is supposed to be conserved during the
assimilation process. (b) Same as (a), but for the second time step of experiment CA D 0.3.
The diamonds correspond to the grid cells where either the modeled or TS ice concentration is
equal to Amax. The triangles correspond to the grid cells where, during the previous time step,
either the modeled or TS ice concentrations were equal to Amax. The crosses correspond to
the other grid cells. The 1:1 line is also plotted.
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